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Aerodynamic and Aeroacoustic Optimization of Rotorcraft
Airfoils via a Parallel Genetic Algorithm

Brian R. Jones,¤ William A. Crossley,† and Anastasios S. Lyrintzis‡

Purdue University, West Lafayette, Indiana 47907-1282

A parallel genetic algorithm (GA) methodology was developed to generate a family of two-dimensional airfoil
designs that address rotorcraft aerodynamic and aeroacoustic concerns. The GA operated on 20 design variables,
which constituted the control points for a spline representing the airfoil surface. The GA took advantageof available
computer resources by operating in either serial mode, where the GA and function evaluations were run on the
same processor or “manager/worker” parallel mode, where the GA runs on the manager processor and function
evaluationsare conducted independently on separate worker processors. The multiple objectives of this work were
to minimize the drag and overall noise of the airfoil. Constraints were placed on lift coef� cient, moment coef� cient,
and boundary-layerconvergence. Theaerodynamicanalysiscode XFOIL providedpressure andsheardistributions
in addition to lift and drag predictions. The aeroacoustic analysis code, WOPWOP, provided thickness and loading
noise predictions. The airfoils comprising the resulting Pareto-optimal set exhibited favorable performance when
compared with typical rotorcraft airfoils under identical design conditions using the same analysis routines. The
relationship between the quality of results and the analyses used in the optimization is also discussed. The new
airfoil shapes could provide starting points for further investigation.

Nomenclature
c = airfoil chord length
cd = sectional drag coef� cient
c f = skin-friction coef� cient
c` = sectional lift coef� cient
cm = section moment coef� cient about 1

4 chord
cp = pressure coef� cient
f = � tness function
g j = constraint function
M = chord Mach number
n = number of CPUs used during a parallel run
ncon = number of constraints
n fc = number of design � ow conditions
nobs = number of observer locations
P ¤ = scaled penalty factor
Pj = penalty function
Re = Reynolds number based on chord
r j = penalty drawdown coef� cients
ue = boundary-layer-edgevelocity
x / c = normalized airfoil station
xs / c = normalized total surface separation, projected along

ordinate axis
y / c = normalized airfoil ordinate
a = geometric angle of attack
W = azimuth angle
8 i = for all instances in the set i
9 i = there exists in the set i

Subscripts

lower = lower surface of airfoil
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upper = upper surface of airfoil
0012 = reference value to NACA 0012 airfoil section

Introduction

T HIS paper discusses the application of a parallel genetic algo-
rithm (GA) to a multiobjective airfoil design problem. Airfoil

shapes were designed to minimize the drag coef� cient and the over-
all averagedsound-pressurelevel (OASPL) for three� ow conditions
representative of those experienced by a helicopter rotor airfoil,
when the helicopter is in forward � ight. An angle of attack, a Mach
number, and a Reynolds number describe these � ow conditions.

Direct airfoil design perturbs an initial airfoil shape to improve
performance of the airfoil. Although successful, this approach gen-
erally produces airfoils deviating only slightly from the initial de-
sign. Calculus-based search methods especially encounter this lim-
itation because they � nd the nearest local optimum to the original
design. Airfoil features like trailing-edge tabs, droop-snoots, and
complex camber would be dif� cult to discover using a traditional
method that perturbs a known shape.

In contrast, inverse airfoil design produces an airfoil whose pres-
sure distribution matches a desired distribution. The inverse ap-
proach risks de� ning a distribution that no physical shape can
produce. The inverse approach suffers further disadvantages when
applied to multiobjectivedesign.To obtaina familyof airfoilshapes,
the designer using inverse methods must specify multiple pressure
pro� les that represent the many possible compromises between ob-
jectives.

This research uses a direct problem formulation by de� ning an
airfoil’s surface using the location of spline control points. These
control points constitute the design variables. Employing the GA to
solve the direct problem allows the discovery of shapes unlikely to
be found using other methods.

Genetic Algorithms

Since its � rst description, the genetic algorithm has been applied
to many engineering optimization problems.1 Based on Darwin’s
survival-of-the-�ttest concept, the GA performs optimization tasks
by “evolving” a population of highly � t designs over many gener-
ations. A GA has the ability to search highly multimodal, discon-
tinuous design spaces. The GA also locates designs at, or near, the
global optimum without requiring an initial design point.
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The GA representsdesign variablesas strings of binary numbers,
which serve as chromosomes. Initially, the GA randomly generates
a populationof individuals.After decodingthe chromosomeof each
individual into the corresponding design variables, each design is
analyzed to determine a � tness value. Individualswith better � tness
values are considered more optimal so that this � tness value must
re� ect both the objective of the design problem and any constraints
imposed upon the design.

The GA employs selection, crossover, and mutation operators to
perform its search. The selection routine performs the survival-of-
the-� ttest functionthat allows better individualsto surviveand serve
as parents. Crossover combines portions of chromosomes from the
surviving parent designs to form the next generation of designs;
combining features of good designs on average, but not always,
results in better designs. This gives the GA its optimization-like
capability. The mutation operator is used quite infrequently, as in
nature, but this operator can mutate a binary bit in a chromosome to
its oppositevalue(e.g.,0 to 1), which can introducebene� cialdesign
traits that did not exist in the current population. If the mutated trait
is poor, the design with this mutation will be unlikely to survive.
This process transforms an initial population of randomly selected
designs into a population of individuals that have adapted to their
environment by becoming more optimal. Additional details of the
genetic algorithm can be found in several texts, such as Ref. 1.

Related Research

Applicationsof theGA to single-objectiveaerospacedesignprob-
lems include airfoil aerodynamics for � xed-wing applications,2 ¡ 4

rotor applications,5 and rotor system design for aeroacoustics.6 GA
applications to the multiobjective and multidisciplinary design of
airfoils have also been investigated.7 Airfoil design has been a pop-
ular application for GAs, although most of these efforts attempted
to solve an inverse problem,8 ¡ 11 frequently for transonic airfoils.
Of those that attempt the direct problem,4,12 many perturb an ex-
isting shape, thus limiting the chances of locating nontraditional
airfoil shapes. Further GA applicationshave started to explore mul-
tiobjective and multidisciplinary problems, including airfoil aero-
dynamic/structural design,5,7 turbine cascade design,13 and wing
design.14,15 Rotor blades have also been optimized to reduce vibra-
tory loads using a parallel GA.16 Additional discussion about GA
applications for rotorcraft can be found in Ref. 17.

There are many variations of the GA and its operators. The GA
used in this work utilized uniform crossover, tournament selection,
andelitism.18,19 Parallelexecutionprovidesef� ciencybene� ts to the
GA, and many implementationshave been studied. These included
distributed coarse-grain parallelization schemes,20,21 demes,2 and
island methods. The coarse-grain scheme was adapted for this ap-
plication. Finally, the use of the GA to solve multiobjective design
problems has been investigated; the n-branch tournament, a gener-
alization of the two-branch tournament approach,22 has been used
here.

Problem Formulation
For a set of three � ow conditions,a family of low-drag, low-noise

helicopter rotor airfoils representing the Pareto-optimal set23 was
generated.The airfoil design problem addresses a two-dimensional
shape,but the � ow conditionsused in this work correspondto differ-
ent azimuthanglesof a helicopterrotor in forward� ight.Aeroacous-
tic predictionsare dif� cult using a two-dimensionalairfoil, and so a
specialized three-dimensionalrotor model, described next, was de-
velopedto calculatea noisemeasure for eachairfoil.This noisemea-
sure includedinformationfrom two observerlocationsand made use
of the aerodynamicconditionsassociatedwith each of the three � ow
conditions.

Aerodynamic Analysis Methods

Because the qualityof any optimizationmethod’s resultsdepends
on the analysesused, well-establishedcodes were selected.The air-
foil analysis code, XFOIL,24 formed the core of the analysis. For

physically valid airfoils (e.g., no crossing of the upper and lower
surfaces) XFOIL predicts the aerodynamic coef� cients c ,̀ cd , and
cm . XFOIL combines the Karmen–Tsien compressibilitycorrection
with a solutiongeneratedfrom closely coupled inviscid and viscous
methods. The linear vorticity, stream function panel method sup-
plies the inviscid solution, and an integral boundary-layermethod
provides the viscous solution. Additionally, XFOIL predicts low-
Reynolds-numbertransitionalseparationbubblesandprovidescom-
pressible analysis up to sonic conditions. Despite problems ana-
lyzing large regions of separated � ow, the viscous capabilities of
XFOIL allow it to predict stall-like conditions for reasonable aero-
dynamic shapes with rounded leading edges and gradual changes in
surface curvature.

Aeroacoustic Analysis Methods

The airfoil’s loading and thickness noise are evaluated using the
aeroacousticcode,WOPWOP.25 This programevaluatesrotor thick-
ness and loading noise at arbitrary observer locations. The noise
calculations depend upon the airfoil thickness, pressure, and shear
distributions as functions of distance from leading edge, which are
provided by XFOIL for this work.

Because thisworkaddressesthedesignof two-dimensionalairfoil
sections and WOPWOP natively handles a three-dimensionalrotor
system, the rotor model was simpli� ed. The primary simpli� cation
reduces the rotor system to a single rectangularplanform,untwisted
blade extending in the radial direction from the 75% radius station
to the tip. Tip effects are a three-dimensionalphenomenon and are
ignored here. The airfoil loading computed by XFOIL for a � ow
condition is assumed constant for all rotor radial stations and az-
imuthal positions in the WOPWOP rotor model. WOPWOP can
then predict the loading noise, thickness noise, and OASPL for the
simpli� ed rotor model. The OASPL is expressed in decibels and
can be computed by adding the thickness and loading noise signals
at observer locations. Repeating this for the other two � ow condi-
tions and summing the OASPL values calculated at each observer
location for all of the � ow conditions provides a noise measure
associated with the two-dimensional airfoil shape. This approach
assumes that if the model associated with one airfoil generates a
lower noise measure than the model associatedwith another airfoil
then the � rst airfoil is a lower-noise design.

Airfoil Representation and Handling

A third-order B-spline with 23 control points described airfoil
surfaces for this application.26 To de� ne an airfoil, the chordwise
coordinates of the B-spline control points remain � xed in a cosine
distribution along a unit chord. One point de� ned the leading edge
and was located on the horizontal axis. Two more points de� ned a
manufacturable trailing edge with a gap of 0.005 x / c. The ordinate
stationsof the remaining 20 points, 10 points each on the upper and
lower surfaces, were the design variables for this problem.

Compared to other methods, a B-spline producesa smoother rep-
resentation of irregular airfoils that are encountered by the GA,
particularly in the initial randomly generated population. Figure 1
illustrates such an airfoil. Obviously, this shape fails to represent a
practical airfoil. The smoothing effect of the B-spline allows some
analysis to be conducted, even on irregular shapes. The surface

Fig. 1 Initial generation airfoil illustrating B-spline surface: ——,
B-spline; and ¦ , control points.
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described by the B-spline is divided into 200 panels for aerody-
namic and aeroacoustic predictions. This relatively high number
of panels allowed traditional cosine spacing (with more panels near
the leadingand trailingedges) for the aerodynamicand aeroacoustic
analyses and provided acceptableresolutionfor less regular shapes.

To keep the problem tractable, limits must be imposed on the
position of each spline control point. Excessively limiting these
parameters removes potentially bene� cial designs from the search
space, whereas excessive freedom wastes computing effort on very
irregular designs. Figure 2 displays the limits used in this problem
description.The � gure also shows the small, � nite gap at the trailing
edge. The bold line represents the upper and lower limits of the 10
upper surface control points, and the thin line represents the limits
for the lower surface. This search space still allows features like
trailing-edgere� ex and large amounts of camber, while eliminating
pointed leading edges and other unsolvable features.

Problem Formulation

Buildingupon the ideas in Ref. 5, the two-dimensionalairfoil� ow
conditions used here represent those experienced at the 75% radius
position on a rotor blade of the example helicopter from Prouty27

in forward � ight with and advance ratio of 0.3. Figure 3 illustrates
these � ow conditions, and Table 1 presents the correspondingcon-
straint limits. These constraintsensure that airfoils generated by the
GA maintain a lift coef� cient equal to, or greater than, that of the
example rotor airfoil and maintain a moment coef� cient smaller in
magnitude than that of the example.

Addressing an aerodynamic objective and an aeroacoustic ob-
jective required two � tness functions. The aerodynamic objective
sought to minimize the airfoil’s drag coef� cient at all three � ow
conditions. Because the GA performs its search using only a � t-
ness value to representa design, this value must re� ect the objective

Table 1 Aerodynamic constraint limits

Flow condition 1 Flow condition 2 Flow condition 3
Coef� cient ( W = 90 deg) ( W = 180 deg) ( W = 270 deg)

c` ¸ 0.16 ¸ 0.60 ¸ 1.00
j cm j < 0.03 < 0.03 < 0.03

Fig. 2 Control point design variable limits: ² , upper surface; and
n , lower surface.

Fig. 3 Airfoil design condition description.

function value and any constraint violations. The aerodynamic � t-
ness function was

f1 =
n fcX

i = 1

"³
cd

cd0012

´
+

nconX

j = 1

r j Pj

#
(1)

In this form drag was minimized, subject to constraints im-
posed via an exterior penalty method, as a sum including all three
(i =1, 2, 3) � ow conditions. Because cd is larger at high angles of
attack, the drag coef� cient at each � ow condition was scaled by the
NACA 0012’s drag coef� cient at the same � ow condition.This scal-
ing providednearly equal considerationof all three � ow conditions.

XFOIL determines boundary-layer properties using an iterative
solution involving both an inviscid and viscous analysis. If the
boundary-layersolution failed to converge within a speci� ed num-
ber of iterations for a given � ow condition, then any resulting aero-
dynamic data were deemed unreliable for this application.Because
of this, two sets of constraint functions were used based on the
convergencetolerance of XFOIL’s viscous/inviscid boundary-layer
iteration scheme.Constraintswere enforcedvia linearpenalty func-
tions of the form:

Pj = max(0, gi ) (2)

where g j is positive valued when violated.
The � rst set of constraints was used when the boundary-layer

solution converged. In this case constraints were enforced for the
lift and moment coef� cients using two constraint functions, and the
third function was set to zero:

g1i = 1 ¡ (c`/c 0̀012)i (3)

g2i = ( j cm j / j cm0012 j )i ¡ 1 (4)

g3i = 0 (5)

When the boundary-layer solution failed, the ratio (cd /cd0012 )
was assigned a value of 100 in order to be larger than the nominal
value for airfoils with converged boundary-layer solutions by at
least an order of magnitude.The � tness value will then have a large
contributionfrom this (cd / cd0012 ) value,andso theairfoil designwill
not be selected in favor of an individualwith a convergedboundary-
layer solution. In this situation the constraints took the form

g1i = 0 (6)

g2i = 0 (7)

g3i = 1 ¡ b (x / c)maxue upper + (x / c)maxue lower c / 2 (8)

The third constraint function g3 re� ects how poor the solution is;
this allows an airfoilwith a nearly convergedboundary layer to have
a better � tness value than an airfoil whose iterative boundary-layer
solution failed near the leading edge of the airfoil. This constraint
uses the chordwise position of the last boundary-layervelocity pre-
diction during initializationof the iteration scheme to measure how
far the solution had proceeded for the upper and lower surfaces.
The constraint is satis� ed when the entire upper and lower surfaces
have nonzero velocity predictions during initialization. Although
this does not directly indicate the quality of the boundary-layerso-
lution, this measurement provides the GA with a consistent means
of comparing two individuals whose boundary-layer solution has
failed.

Drawdown coef� cients r j in Eq. (1) scaled the penalty to the
magnitude of the objective. The penalty associated with Eq. (8)
received a larger value of r to encourage designs that would allow
solution of the boundary-layercalculations.

The aeroacoustic � tness function incorporated the multiple � ow
conditions as well as multiple observer locations. The objective
sought to minimize the airfoil’s OASPL values, as summed over
multiple� ow conditionsandas seenbymultipleobservers.Note that
OASPL includes thickness and loading noise, but does not include
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Fig. 4 Variation of f2 with changing observer angle: u , airfoil num-
ber 1; and ¦ , airfoil number 2.

the effects of high-speed impulsive (HSI) noise (i.e., shock-wave
noise) and blade-vortex interaction (BVI):

minimize f2 = P ¤
nobsX

k = 1

(
n fcX

i = 1

[OASPL + ra max(0, gsep)]i

)

k

(9)

Two observer locations were placed 50 m from the hub of the
simpli� ed WOPWOP rotor model, one in the rotor plane and one
below the rotor along a ray angled at 45 deg to the rotor plane. Be-
causeOASPL combines loadingand thicknessnoise, usingmultiple
observerlocationspreventeda single sourcefromdominatingthe � t-
ness function.For example,observationsin the rotor plane are dom-
inated by thickness noise, whereas loading noise dominates obser-
vations below the rotor. The directivity of OASPL varies smoothly
with thechangingangleof anobserverlocatedbelowthe rotorplane.
Figure 4 illustrates the smooth variation of the aeroacoustic � tness
function for two of the airfoils eventuallygenerated by the GA. The
simpli� ed WOPWOP rotor model for the two-dimensional airfoil
has no azimuthal directivity of the noise because of the constant
loading assumptions just described. Thus, two observer positions
were deemed adequate for this work, whereas two observers might
not be enough for more complicated problems (e.g., including BVI
or attempting a three-dimensionalrotor-blade design).

A scaled penalty factor22 P ¤ enforces aerodynamic constraints
for the aeroacoustic � tness function so that penalties imposed on
the aeroacoustic� tness have the same scale as those imposed on the
aerodynamic � tness:

P ¤ = f1

,
nfcX

i = 1

³
cd

cd0012

´

i

(10)

The aeroacoustic � tness function in Eq. (9) contains one addi-
tional constraint not addressed in the aerodynamic � tness function.
A linear penalty functionenforcesa boundary-layerseparationcon-
straint gsep , when more than 30% of the total airfoil surface (both
upper and lower) projected along the ordinate axis experiencessep-
arated � ow. This reduces the arti� cial bene� ts to thickness noise
predictions obtained when XFOIL sets the skin-friction coef� cient
to zero in areas of separated � ow. The penalty is scaled to the order
of the objective function using the drawdown coef� cient ra :

gsepi = (xs / c) / 0.3 ¡ 1 (11)

Implementation
To solve this multiobjective airfoil problem, a parallel GA was

developedthat incorporatedsomenecessaryadditionalfeatures.De-
signvariableencodingfor thebinarychromosomesfolloweda Gray-
coding scheme to avoid Hamming distance issues between adjacent
variable values.1 Empirically derived relationships for the popula-
tion size and mutation rate were used.28 Features were developed
to deal with the close coupling of the two objectives and with the
dif� culty in obtaining an initially viable population. These include
an adaptive single objective to multiobjective� tness evaluationand

the “reparenting”of unsolvable individuals. Reference 29 includes
additional details of these special features.

Genetic Operators

The GA employed an n-branch tournament selection, where n
corresponds to the number of objectivesconsidered.This method is
an extension of the two-branch tournament selection.22 After plac-
ing the entire currentpopulationin a “pot,” a user-de� ned numberof
individualsis randomly selected without replacement from this pot.
These individuals compete, with the most � t individual surviving
as a parent. Every member of the population competes on one of
the n-� tness functions.Completing the selectionprocess for a given
branch leaves the pot empty. After the pot is re� lled using the cur-
rent population, selection continues using the next branch. Figure 5
illustrates the process when minimizing two � tness functions.

After selection two members of the parent pool are randomly
selected, without replacement, and “mated” in order to pass on
their traits to two children. This is implemented using uniform
crossover.30 Mutation occurs with a very low probability. This op-
eration changes a bit in the chromosome to its opposite value (i.e.,
1 to 0, or 0 to 1), which helps the evolution proceed toward a global
solution by introducing binary patterns that may not exist in the
present population.This process repeats until an new generationof
individuals is created.

The implemented GA also included an elitism operator. This op-
erator replaces an individual from each new population with the
best individualof the previousgeneration.When performing a mul-
tiobjective optimization, multiple replacements occur as the best
individual in each � tness function survives as an “elite.” The ad-
dition of elitism to the GA was observed to bene� t the solution of
multiobjective problems.22

Pareto Set Determination

To beconsideredParetooptimal, individualsmust bebothfeasible
and nondominated.23 A design is considered nondominated if no

Fig. 5 Flowchart of n-branch tournament selection using two � tness
functions.
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other design exists that is better in all objectives.Mathematically, a
design with a vector of objective values u is dominated by a design
with a vector of objectivevalues v if the following condition is met:

8 i vi · ui , 9 i vi < u i , i = 1, 2, . . . , n (12)

The GA evaluates thousands of designs during a run, and any
feasible nondominated design evaluated during the run is of inter-
est. Consequently, the GA stores the set of feasible nondominated
individuals in a linked list. This data structure best handles the � uc-
tuating length of this set, as members are inserted and removed
according to the conditionsof Eq. (12). Evolution halts when either
the maximum number of generations is reached or a stopping cri-
terion is satis� ed. Here, the stopping criterion is satis� ed when the
approximate Pareto-optimal set ceases to change.

Feasibility-Handling Features

Solving the direct airfoil design problem proved challenging be-
cause of the limits of the analysis tools, the design space size, and
the degree of coupling between objectives.Consequently,a system
of feasibility classes was developed. The range of possible airfoil
shapes effectively required the GA to solve two separate problems.
First, the GA needed to evolve a population of airfoils for which
XFOIL could generate reasonable solutions. Only then could the
GA solve the multiobjective problem because WOPWOP calcu-
lations need information from XFOIL. An airfoil whose upper and
lower surfacescrosspresentsa physicallyimpossibleshape,whereas
the shape in Fig. 1 is typical of an airfoil prompting numerical in-
stabilities within XFOIL. Shapes of both kinds prevent successful
aerodynamic analysis.

Six classes were de� ned to allow constraint handling: 1) un-
known—initialization class, no analysis performed; 2) impossi-
ble—physically impossible shape; 3) unsolvable—solution aborted
as a result of numerical instability in XFOIL; 4) unviable—
aerodynamic solution attempted, but boundary-layer solution did
not converge; 5) infeasible—converged solution returned with vi-
olated constraints; and 6) feasible—converged solution returned
without violated constraints.

If the analysis routines deem a design impossible or unsolvable
in the initial generation, the design is replaced with another ran-
domly generated individual.During successivegenerations,the GA
reapplies the crossover and mutation operators to the parent de-
signs to form a different design. Because each parent design was
at least solvable, their design chromosomes contain some valuable
genetic material. This reparentingprevents the loss of this informa-
tion. Random replacementafter the initial generationwould reduce
the selection pressure that drives the evolutionaryprocess.

Complementing reparenting,an adaptive � tness function evalua-
tion scheme was developed. The GA � rst sought to minimize only
the aerodynamic� tness until at least 60% of the populationmaintain
convergent boundary layers, and then the GA began multiobjective
optimization at the next generation.This proved advantageoushere
because the aeroacoustic analysis requires pressure and shear data
from the aerodynamicanalysis. By competing on a single objective
� rst, the entirepopulationcan be used to reacha viabledesignspace.
After obtaining a usable population, both � tness functions can be
evaluated, and multiobjective optimization can ensue.

Parallelization

Increased computational cost accompanies using a GA to solve
the direct airfoil design problem. Adequate resolution of the spline
controlpoints that determine the airfoil surfacerequiresa long chro-
mosomeanda correspondinglylargepopulation.Whenevolvedover
enoughgenerationsto satisfactorilygenerate the Pareto-optimalset,
solvingtheproblemrequirestensof thousandsof � tnessevaluations.
Because the � tness evaluation of each individual in the population
is independent of other individuals, the GA is well suited to coarse
grain parallelization.The Message Passing Interface (MPI) was se-
lected to parallelize the code.

A manager/worker model was employed. In this approach the
manager nodeperforms all GA operationsand distributesindividual

airfoildesignsto theworkernodes for analysis.The solepurposeof a
worker node is to calculatethe � tness value of its current individual.
The manager and workers communicate via blocking communica-
tion, which dictates that neither the sending nor receivingprocessor
can begin another task until the communication is complete. Be-
cause the GA begins with a random population, large differences
in evaluation time can exist among differentdesigns.Dynamic load
balancing allows idle workers to begin new tasks without waiting
for slower workers to � nish.

Results
Because of limited access to computational resources, two sep-

arate computer systems were used to generate results. Employing
the adaptive single-objectiveoptimization, generating a population
in which 60% of the individuals maintained converged boundary-
layer solutions was completed on the PAPERS machine developed
by the Purdue University Department of Electrical Engineering.31

Seventeen Pentium II (300 MHz) PCs processed 450 generations
over approximately3 days beforegeneratinga populationof designs
meetingtheviabilitycondition.This populationwas then transferred
to the 128-node San Diego SupercomputerCenter IBM SP2 to gen-
erate multiobjective results. An additional 5 h and 20 min of com-
putation across 57 available nodes created an approximate Pareto-
optimal set consisting of six feasible nondominated individuals.
Figure 6 displaysthe Pareto frontof this setwith threerepresentative
airfoils. The function space plot compares � tness values, which

Aerodynamic best airfoil

Compromise airfoil

Aeroacoustic best airfoil

Fig. 6 Pareto front and representative airfoils.
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Fig. 7 Compromise airfoil pressure pro� les: ¦ , � ow condition 1; u ,
� ow condition 2; and n , � ow condition 3.

Fig. 8 Airfoil shapes in estimated Pareto-optimal set.

account for any penalties. The three highlighted airfoils exhibit
the best predicted aerodynamic performance (based on the � tness
function f1), the best predicted aeroacoustic performance (based
on f2), and a compromise between aerodynamic and aeroacoustic
performance.

Because the GA requiresno initial startingpointand does not per-
turb known shapes, the discoveryof nontraditionalairfoils is possi-
ble. This research intended to discoverairfoil shapes that would not
have been found via traditional optimization approaches, and the
resulting airfoils are atypical. As a measure of validation, the pres-
sure coef� cient distributions at the various � ow conditions of the
compromise airfoil are displayed in Fig. 7. These pro� les behaved
as expected. Drops in the pressure pro� le correspond to dips in the
airfoil surface. Similar investigations indicated that the � ow would
separate from the upper surface near the trailing edge of the best
aeroacousticairfoil in Fig. 6. A slight pressurerecoveryexists along
the upper surface of the aerodynamic best airfoil. Additional vali-
dation was made by using the Euler-solver/integral boundary-layer
code MSES32 to predict pressuredistributionsand aerodynamicco-
ef� cients for unconventionalairfoils.The predictionsof XFOIL and
MSES showed good agreement, varying by 2% or less. Reference
29 presents details of these comparisons.

Figure 8 shows the individuals comprising the estimated Pareto-
optimal set. Scanning from left to right across each row relates the
set as traversed from the best aerodynamic, but worst aeroacoustic,
airfoil to the best aeroacoustic,butworst aerodynamic,airfoil.Many
of the featuresevidenton the airfoilsappear reasonablewhen exam-
ined independently. Most airfoils have camber toward the leading
edge. Increased camber bene� ts c` while positioning the camber
toward the leading edge reduces the aerodynamicpitching moment.
Re� exed trailing edges produce a restoring moment, further reduc-
ing cm . Larger radius leading edges help prevent � ow separation at
higheranglesof attack,whereasthinnerairfoilshave lesspro� le drag
and reduced thicknessnoise. Individualsnear the aerodynamicedge
of the Pareto frontmaintain laminar � ow over 80% of the lower sur-
face and 20% of the upper surface for the multiple � ow conditions.

Perhaps the most unusual feature are the “waves” in the upper
and lower surfaces that grow more pronounced in airfoils toward

Fig. 9 WOPWOP noise values for compromise airfoil.

the aeroacoustic side of the Pareto front. This feature appears re-
sponsible for lower estimates of OASPL, even though thicknessand
loadingnoisepredictionsremain essentiallyconstantor increase for
airfoilscloser to the aeroacousticbest airfoil.To illustratethis,Fig. 9
presentsWOPWOP calculatednoisevaluesfor the aeroacousticbest
airfoil. The aeroacoustic � tness function [Eq. (9)] is the sum of the
OASPL values from both observerlocationsfor each� ow condition.
The OASPL value for this airfoil is lower than either the thickness
or loading measures for most of the observers and � ow conditions,
suggesting that a cancellation occurs between the thickness and
loadingnoise. This is true for airfoils with the wavy surface feature.
Although this cancellation may be nonphysical, it is an interesting,
atypical feature that was discoveredwith the GA. The noise cancel-
lation of these waves needs further study. If the analysis technique,
rather than a physical phenomenon, creates this cancellation,using
the thickness and loading noise separately in the evaluation of the
aeroacoustic � tness instead of OASPL can remedy this.

Comparisons with existing airfoils additionally increase the va-
lidity of these nontraditional rotor airfoil shapes. Figure 10 com-
pares the GA-generatedcompromise airfoil against the NACA 0012
(Ref. 33) and the Boeing Vertol VR-7 (with 0 deg T.E. tab).34 The
NACA 0012 is the airfoil of Prouty’s example helicopter.27 The VR-
7 airfoil is an airfoil shape developed speci� cally for a helicopter
rotor. In the plots, the published results are taken from Refs. 33 and
34 for Reynolds numbers closest to those of the design � ow con-
ditions; this provides an idea of how closely the predictions agree
with experimentaldata.No publisheddata for the VR-7 matched the
Reynolds number of � ow condition 3. The combination of XFOIL
and WOPWOP used to provide � tness values for the GA produced
the remainingvalues shown in these plots. The GA compromiseair-
foil compares favorably in light of the speci� ed design constraints.
Before making detailed comparisons, one should note that XFOIL
was unable to converge on a boundary-layersolution for the NACA
0012 at the second � ow condition (corresponding to W =180 deg).
This may suggest drag predictions of less than desirable accuracy.
Observations taken over several runs indicate that the second � ow
condition was the most dif� cult of the three to obtain suf� cient
boundary-layersolutions.

Although the NACA 0012 performs well in pitching moment, it
displays shortcomings in all other categories. The VR-7 performs
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Fig. 10 Comparison of GA-generated compromise airfoil to existing
airfoils.

well in all categories,with the exception of moment. The GA com-
promise airfoil is predicted to be quieter than the VR-7, while
maintaining good aerodynamic performance. Relaxing the cm con-
straint would allow a more direct comparison to the VR-7. Consid-
ering that the GA had no incentive to improve c` above the NACA
0012 c` constraints,the GA compromise airfoil compares favorably.
Herein lies an advantageof the n-branchGA; developingthe Pareto
front allows a designer to consider tradeoffs between the different

objectivesand select an airfoilsuitable to the statedneeds.For exam-
ple, the best feasible aerodynamicairfoil generated by the GA has a
better predicted aerodynamic� tness function than either the NACA
0012 or the VR-7. Given the level of analysis tools employed, the
GA-generated airfoils appear valid. However, these shapes should
notbe viewedas � nal airfoil designsbut as startingpoints for further
re� nement.

Discussion
Even with feasibility classes and adaptive single-objective/

multiobjective� tness evaluation,the GA expendedmost of its effort
evolving a solvablepopulation from a vast design space. At the end
of a run, only 75% of the population were viable designs (XFOIL’s
boundary-layer solution scheme had converged), and only 25% of
the population were feasible designs (viable designs with all con-
straints satis� ed). These low percentages result because the search
ability of the GA that allows for the discovery of nontraditional
shapes also requiresXFOIL and WOPWOP to evaluatedesigns that
may be beyond their intendedscope. The most likely solutionto this
problem is the development of more robust analysis tools capable
of evaluating unusual shapes, although this would create additional
computationalexpense.

Concerns for Application

The GA can generate nonintuitive shapes because of its
population-based search and global optimization behavior. How-
ever, like most optimization techniques, the GA will exploit lim-
itations of the analysis methods and shortcomings in the problem
formulation. For example, airfoils can encounter transonic effects
at some of the � ow conditions,yet wave drag is not addressed with
the currentanalysis.The dragcalculationsfor unconventionalairfoil
shapesmay be suspect;a higher-ordercomputational� uid dynamics
code including turbulence modeling may be needed. Similarly, the
presentaeroacousticanalysisneglectsHSI, BVI, or broadbandnoise
associatedwith separation-inducedunsteady� ow. The resultingair-
foils are only as good as the ability of the analyses to predict the
airfoils’ performance.Because of the aforementionedconcerns,ad-
ditional analysis of the two-dimensionalairfoils using higher-order
tools and modeling and analysis of a three-dimensionalrotor using
these shapes are required before the GA-generated airfoils should
be considered for application.

Parallel Execution

The additionalcapabilityobtainedthroughparalleloperationcan-
not be underestimated. The manager/worker parallel GA achieved
a speed up close to the ideal 1/ (n ¡ 1) value when solving the air-
foil problem on an IBM SP2. The test documented in Fig. 11 plots
the solution time for � ve generations of the rotor airfoil problem
against an increasing number of single processor nodes. Although
restricted in the number of generations to conserve computing allo-
cation, this study shows a strong similarity between the actual and
ideal speed-up values.

The performance displayed in Fig. 11 was expected for several
reasons. The problem has a signi� cantly high ratio of computation
time to communication time. The communication times are on the
order of microseconds, but airfoil evaluations averaged approxi-
mately 16 s each on this system. On average, a XFOIL analysis

Fig. 11 Distributed system scalability study: ¦ , actual; and ¢ ¢ ¢ ¢ ¢ ,
ideal.



JONES, CROSSLEY, AND LYRINTZIS 1095

takes 3.1 times longer than a WOPWOP analysis. For some cases
the actual and ideal wall clock times differ slightly. Toward the be-
ginning of the trend line, the difference results from the lack of a
two-node (one manager–one worker) computation.For this case the
total wall clock time would actually increase above the serial (one
node) computationbecause of the addition of communication time.

The remaining discrepancies result from varying numbers of � t-
nessevaluationsneededduringthe differentruns.Althoughthe same
random seed was used in all runs to provide the same initial genera-
tion, the differing number of nodes used allowed the GA to process
the individuals in different orders. The worker nodes returned in-
dividuals to the manager node as the � tness evaluations were com-
pleted, and the manager placed these in the population in the order
they were returned.With differentnumbers of worker nodes, the re-
turn order varied so that the pairs of individuals selected as parents
varied with the number of workers. For example, this reordering re-
quired the reparenting of 1724 individuals during the 32-node run,
whereas the 16-node run replaced 822 individuals. This negated
much of the expected speed up between the 16- and 32-node runs.
The discrepancy resulting from workers idled between generations
while the manager performs the genetic and statistical operations
also remains. Despite these details, the dynamically load balanced
parallel GA scales quite well as the number of CPUs increases.

Conclusions
Given a problem representinga helicopter rotor airfoil and using

the codes XFOIL and WOPWOP, the GA generated a set of rotor
airfoil shapes representing compromises between aerodynamic ef-
� ciency and minimum noise. Based upon predictionsfrom the low-
order analysis tools employed, the resulting nontraditional shapes
appear to offer good aerodynamic and aeroacoustic performance.
The n-branch tournament selectionallowed a range of designs to be
generated in a single run of the GA, which lets designers choose an
airfoil best suited to their needs.Also, the inclusionof advancedfea-
sibility handling and generationallyadaptive � tness function evalu-
ation allowed the GA to successfullyevolvea populationin a design
space containing large regions of unsolvableairfoil shapes.Among
the generated shapes, airfoils with waves in the upper and lower
surfaces have predicted reductions in the overall averaged sound-
pressure level. This feature would likely not have been discovered
using a traditional design approach. In view of the analysis tools
used, the GA-generated designs provide intriguing starting points
that require further development prior to application.

Using MPI to implement a manager/worker parallel model made
this computationally expensive problem tractable. The inherently
parallel structure of the GA made the implementation straightfor-
ward, and dynamic load balancingaddedef� ciency.The rotorairfoil
problem maintained a very high ratio of computation to communi-
cation. Consequently,the problem’s scalabilityclosely matched the
ideal value of 1/ (n ¡ 1). The parallel GA generated solutions that
would not havebeenobtainedusingother optimizationmethods and
did so in reasonable times.
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